Voltage and Reactive Power Control using Recurrent Neural Networks
نویسندگان
چکیده
منابع مشابه
Fuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملVoltage and Reactive Power Control in MV Networks integrating MicroGrids
The main objective of this paper is to describe a strategy to deal with the voltage/reactive power problem for a MV distribution network integrating microgrids. The global problem, concerning all voltage levels, is detailed here and will imply the optimization of operating conditions by using the control capabilities of power electronic interfaces from DG sources, OLTCs and microgrids, through ...
متن کاملfuel cell voltage control for load variations using neural networks
in the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. one of the most common types of dg technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone studies the dynamic behavior andstability of the power grid is of crucial importance. these studies need to know the exact mo...
متن کاملVoltage Regulation of Distribution Networks through Reactive Power Control
Until recent years, the connection of dispersed Independent Power Producers to electrical networks has not been a problem for utilities, due to the fact that installed power represented a small amount of the total power connected to the system. But in the last few years this scenario is changing and especially wind energy has turn out to be one of the most important and promising sources of ren...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1993
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.113.6_424